If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3j^2-14j+15=0
a = 3; b = -14; c = +15;
Δ = b2-4ac
Δ = -142-4·3·15
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4}{2*3}=\frac{10}{6} =1+2/3 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4}{2*3}=\frac{18}{6} =3 $
| 50=8y+2 | | -3x1/3=5/3 | | -5-25x=65 | | 8/15=n/25 | | 10.5=2500/x | | 28m+19=42m+12 | | 3(8+x)=3 | | -7.5-1.5h=-0.9h | | b/5+1/9=14 | | 25+1t=20+1.50t | | 22-(6/5)x=-(6/5)+22 | | 30x+7=367 | | 3x^2-57x+26=0 | | 25x^2-150x+222=0 | | 17x-(9x-2)=74 | | 2k=-16+k | | 1/5y+2=6 | | 2h+9=69 | | z-7/18=5/18 | | 3j^2+13j-10=0 | | -4d+18-10d=-13d-1 | | 160=7b+6 | | 3x-10+5x=5x-7 | | 3x-11=74+6 | | (x/x+7)+8=60/x+7 | | -2b-16=-4b | | ½(10+12n)=⅓(15n+15) | | 4j^2-11j+7=0 | | x+23.25=39.00 | | 5g+6=2g+6 | | W+6=2(w-6 | | 4+12=-2(6-4a) |